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Abstract—In general, existing cross-domain recognition meth-
ods mainly focus on changing the feature representation of
data or modifying the classifier parameter and their efficien-
cies are indicated by the better performance. However, most
existing methods do not simultaneously integrate them into a
unified optimization objective for further improving the learn-
ing efficiency. In this article, we propose a novel cross-domain
recognition algorithm framework by integrating both of them.
Specifically, we reduce the discrepancies in both the conditional
distribution and marginal distribution between different domains
in order to learn a new feature representation which pulls the
data from different domains closer on the whole. However, the
data from different domains but the same class cannot inter-
lace together enough and thus it is not reasonable to mix them
for training a single classifier. To this end, we further propose
to learn double classifiers on the respective domain and require
that they dynamically approximate to each other during learning.
This guarantees that we finally learn a suitable classifier from
the double classifiers by using the strategy of classifier fusion.
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The experiments show that the proposed method outperforms
over the state-of-the-art methods.
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I. INTRODUCTION

TRAINING an accurate classifier commonly needs a large
number of high-quality labeled samples from the same

distribution. However, in many real-world applications, the
training and test data points cannot always have the same
distribution due to the different data acquisition equipments
or human emotional factors. When the classifier is trained by
the data from different distribution, the classifier has inferior
performance. For example, the images in Fig. 1 have different
distributions. The images of each row come from the same
subject and the images of each column come from the same
domain. Thus, these images in Fig. 1 come from three differ-
ent subjects and domains. When the classifier is trained by the
images in the first and second columns, the classifier has infe-
rior classification performance in classifying the images in the
third column. Transfer learning can address this issue by bor-
rowing the labeled yet relevant data from the source domain to
boost the classification performance of classifier in classifying
target-domain data. Specifically, transfer learning aims to make
the source domain match the target domain so that the knowl-
edge learned from the source domain can be used to promote
classifier for classifying the target-domain data [1]. As a prac-
tical application of transfer learning, cross-domain recognition
can take advantage of the knowledge of the source domain to
facilitate the task of the target domain. Recently, considerable
research efforts have been devoted to the topic of cross-domain
recognition, such as cross language and text classification
[2], [3]; objective and biometrics recognition [4]–[10]; and
part of speech tagging [11].

In existing cross-domain recognition methods, they com-
monly learn a transferrable feature representation [12]–[15] or
classifier [16], [17]. The goal of learning transferrable feature
representation is to obtain a well-aligned feature representation
or make the data from both domains have similar distribution.
Learning the transferrable classifier aims to adjust classifier
model parameter so that the classifier itself can be adapted
to different domains. In this way of learning the transferrable
classifier, the data are commonly fixed while decision bound-
aries are allowed to change. In the cross-domain recognition
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Fig. 1. Nine images of three subjects from different domains. As can be
seen, the visual appearance of the images of each subject varies severely.

scenario, the classifier needs the most suitable feature repre-
sentation to define the model parameter and simultaneously the
classification performance of classifier should be used to guide
the feature representation learning. However, both of them are
not known in advance. Most of the previous methods mainly
focus on learning the transferrable feature representation of
data or classifier parameter and few methods simultaneously
consider the two factors. Generally, the new feature represen-
tation is used to train the classifier and thus the classification
results highly depend on the feature representation learning.
In cross-domain recognition, since the data have distribution
discrepancy, it is very challenging to learn a suitable feature
representation of data for training an accurate classifier. In
most of the existing cross-domain recognition methods, the
feature representation learning and classifier learning are often
conducted in two separated steps, the learned feature repre-
sentation may not be the optimal one for the classifier model
parameter learning and lead to the suboptimal classification
results. In addition, these methods are not always to reduce
the discrepancies completely and thus, we should seek another
way to further weaken the negative effect of the discrepancies
in the process of learning classifier.

In this article, we reduce discrepancies in both condi-
tional and marginal distributions between different domains
into a unified subspace learning framework by using label
information, which however can only reduce the discrepancy
to a certain degree. In other words, the new feature representa-
tion can only pull the data from cross-domain closer. However,
the data from different domains but sharing the same label
cannot interlace sufficiently. If we directly use the new fea-
ture representation to train a single classifier, then the obtained
classifier may be a biased estimation and not achieve good
performance. As shown in Figs. 4 and 5, the experiments of
visualization and classification accuracy show that the classi-
fier trained by the new feature representation is really a biased
estimation. Therefore, we should use a new feature represen-
tation of different domains to, respectively, train classifier and
require these two classifiers to be approximated each other.
Also as shown in Figs. 4 and 5, the classification accuracies
of two different classifiers A1 and A2 are better than that of the
classifier trained by new feature representation. This indicates
the effectiveness of training two different classifiers. To learn a
unified classifier, we further propose a classifier fusion strategy
to form the final classifier. Based on the above considera-
tions and preliminary experimental results, we propose a novel
dynamic double classifier approximation (DDCA) method in

which the new feature representation of different domains is
exploited to train different classifiers, respectively. In DDCA,
these two different classifiers are required to dynamically
approximate each other during learning so that we can obtain a
better classifier by using the classifier fusion strategy. We use
the mean of these two different classifiers as the final classi-
fier which can guarantee that our method outperforms over the
state-of-the-art methods significantly. The experimental results
in Figs. 4 and 5 (i.e., the classification results obtained by using
classifier A ) also indicate the effectiveness of the classifier
fusion strategy. Our method combines both feature represen-
tation learning and classifier parameter learning together and
thus our method can be viewed as a general framework for
cross-domain recognition. The contributions of this article are
summarized as follows.

1) Our method considers the condition that the distribu-
tion of original data is very complex and the strategy of
reducing discrepancies in both conditional and marginal
distributions may not reduce the distribution discrepancy
effectively. To this end, our method adopts the way of
classifier adaptation by using the new feature representa-
tion of different domains to train two different classifiers.
This can avoid the interaction between the new feature
representation of different domains, which can effec-
tively eliminate the negative influence of distribution
discrepancy of the new feature representation.

2) We propose a novel DDCA method in which double
classifiers are trained on the new feature representations
of different domains, respectively, rather than training a
single classifier on their mixed data. In order to better
fuse classifiers, these two classifiers are required to be
approximated to each other during learning. In doing
so, the final classifier, that is, the mean classifier cannot
deviate from the two classifiers too much and thus the
final obtained classifier is not a biased estimation. This
can guarantee that the final classifier can classify the
unlabeled data accurately.

3) An efficient optimization algorithm is developed to
solve the optimization objective. We also use theories
and experiments to demonstrate that our optimization
algorithm is effective and converges quickly. Extensive
experimental results on the synthetic and several bench-
mark datasets show that our method achieves the state-
of-the-art results.

The remainder of this article is organized as follows. In
Section II, we provide a brief review on related works.
Section III presents our method, optimization algorithm, and
algorithmic analysis. In Section IV, we evaluate our method by
comparing it with several baseline methods on the synthetic
and real dataset. Section V concludes this article with future
research direction.

II. RELATED WORKS

In this section, we briefly discuss many related transfer
learning and cross-domain recognition methods and highlight
the differences between our method and these methods. For
the other methods which do not appear in this article may
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be still related to our method but is more involved due to
the limitation of space. Two well-known surveys of transfer
learning methods can be found in [18] and [19]. According
to the survey [18], existing transfer learning methods can be
roughly classified into two categories: 1) instance reweight-
ing [20], [21] and 2) feature extraction or subspace learning.
Our work can be classified into the category of feature extrac-
tion, where the distribution adaptation technique is commonly
used to support domain knowledge transfer [22]–[28].

For the subspace learning-based transfer learning method,
a large number of methods have been proposed in the litera-
ture [1], [29]. Long et al. [12] proposed a subspace learning-
based transfer learning method where both the marginal
distribution and conditional distribution (joint distribution
adaptation, JDA) are simultaneously adapted in a dimen-
sionality reduction framework for learning the transferrable
representation of data. Zhang et al. [30] proposed to jointly use
the geometrical and statistical alignment (JGSA) for address-
ing the visual-domain adaptation problem. JGSA used two
coupled projections to learn the low-dimensional subspace
in which the geometrical and distribution shifts are reduced
simultaneously. Gong et al. [31] proposed a geodesic-flow
kernel (GFK) method for domain adaptation which integrates
over all the intermediate subspaces lying on the geodesic path
without exploiting the sampling strategy. Ghifary et al. [32]
proposed to use the scatter component analysis (SCA) to
extract the transferrable features for domain adaptation and
domain generalization. Shao et al. [16] proposed a gener-
alized low-rank transfer subspace learning (LTSL) method
which integrates many existing subspace learning methods into
the LTSL framework. LTSL uses the low-rank constraint to
constrain the reconstruction coefficient and projection matrix
for obtaining a common subspace in which the projected
data from the source and target domains have a better data
alignment. Zhu and Shao [33] proposed a weakly super-
vised cross-domain dictionary learning (WSCDDL) method
for visual objective recognition in which the domain-adaptive
dictionary pair and corresponding classifier parameters with-
out using any prior information are learned simultaneously and
the reconstruction coefficients are used as the new feature rep-
resentation to perform final objective recognition. Li et al. [1]
proposed a domain adaptation method via a covariance match-
ing (DACoM) for semisupervised domain adaptation. DACoM
projects the original data into a common latent space to mini-
mize the covariance mismatch of the two mapped distributions
and preserve the local geometric structure and discriminative
information. Xu et al. [6] proposed a novel transfer subspace
learning method by using joint low-rank and sparse constraints
(JLSCs) to constrain the construction coefficients for obtain-
ing a well-aligned feature representation. JLSC simultaneously
learns the large margin classifier and new feature represen-
tation of data. Apart from the aforementioned methods of
changing feature representation of data, the feature-level-based
deep learning technique has achieved remarkable successes for
transfer learning [28], [34]–[37]. These deep transfer learn-
ing methods also integrate feature representation and classifier
learning in a unified framework. Therefore, the classifica-
tion results of these methods may be improved but are more

TABLE I
NOTATIONS AND DESCRIPTIONS OF MANY TERMINOLOGIES

involved for our article. We leave it as a future direction to
extend our method into deep learning framework.

Generally, despite the promising results are achieved by
the aforementioned methods, there are many limitations for
these methods. First, they commonly first learn a common
subspace in which the distribution divergence is minimized.
Then, the final classification is performed on the common
subspace. However, minimizing the distribution divergence
does not mean the best classification accuracy owing to these
two independent steps. Therefore, the common subspace may
be not the best discriminative one for classification. Second,
although the distribution divergence in the common subspace
may be reduced to some extent, there is still certain divergence
between the source and target domains which may prevent
classifier learning. In this case, the classifier should not be
trained on such feature representation. To address these issues,
we propose a novel cross-domain recognition framework that
integrates feature representation learning and classifier learn-
ing into a unifier optimization objective. Moreover, we propose
a DDCA method to avoid the negative effect of distribution
divergence.

III. PROPOSED METHOD

In this section, we introduce our method, called DDCA to
address the cross-domain recognition problem. We begin with
the definitions of terminologies. For clarity, the notations used
in this article are summarized in Table I.

A. Dynamic Double Classifiers Approximation

Obtaining a suitable feature representation of data is a pre-
condition of achieving better classification performance in
cross-domain recognition task. Empirical maximum mean dis-
crepancy (MMD) is commonly used as the distance measure
to compare different distributions of the source and target
domains. The formulation of MMD is as follows:

∥
∥
∥
∥
∥
∥

1

ns

ns∑

i=1

PTxi − 1

nt

ns+nt∑

j=ns+1

PTxj

∥
∥
∥
∥
∥
∥

2

= Tr
(

PTX�0XTP
)

(1)

where

(�0)ij =

⎧
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1
nsns

, xi, xj ∈ Ds
1

ntnt
, xi, xj ∈ Dt

−1
nsnt

, otherwise
(2)
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is the MMD matrix and Xs = [x1, x2, . . . , xns ] ∈ �m×ns , Xt =
[xns+1, xns+2, . . . , xns+nt ] ∈ �m×nt , X = [x1, x2, . . . , xns+nt ] ∈
�m×(ns+nt). By minimizing objective (1), the marginal distri-
butions between source and target domains is reduced and the
data from these two sources are drawn close. Although the
difference in the marginal distributions is reduced by using
MMD, the conditional distributions between different domains
maybe not drawn close [12], [38]. To this end, the label
information of source and target domain data is used to modify
MMD for measuring the distance between the class conditional
distributions and the modified MMD is as follows:

∥
∥
∥
∥
∥
∥
∥

1

n(c)
s
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xi∈D(c)
s

PTxi − 1
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t
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t
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∥
∥
∥
∥
∥
∥
∥

2

= Tr
(

PTX�cXTP
)

(3)

where D(c)
s = {xi : xi ∈ Ds∧y(xi) = c} is the set of data points

belonging to class c(c = 1, 2, . . . , C) in the source domain,
y(xi) is the label of xi, and n(c)

s = |D(c)
s |. Similarly, D(c)

t =
{xj : xj ∈ Dt ∧ y(xj) = c} is the set of data points belonging
to class c(c = 1, 2, . . . , C) in the target domain, y(xj) is the
label of xj and n(c)

t = |D(c)
s |. Matrix �c is computed as

(�c)ij =

⎧
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,

{

xi ∈ D(c)
s , xj ∈ D(c)

t

xj ∈ D(c)
s , xi ∈ D(c)

t

0, otherwise.

(4)

By minimizing (3), the conditional distributions between
domains are also drawn close. Combining (1) and (3), we
obtain

Tr
(

PTX�XTP
)

(5)

where � = �0 + �c. However, we clarify that the transfor-
mation matrix P ∈ �m×d (d � m) only pulls the data from
different domains closer but not enough to interlace each other
in respective class [see Fig. 4(c) and (d)]. Therefore, the new
feature representation of PTX maybe not the optimal one for
the classifier learning. To this end, we propose to train double
classifiers on the new data feature representation of source and
target domains, respectively. For simplicity, the linear regres-
sion function is adopted to map the corresponding relationship
between PTXs and its labels of Y1 (PTXt and its labels of Y2).
In our previous work, the effectiveness of label relaxation has
been proved [39]. In this article, we also adopt this strategy
to learn the classifier parameters W1 ∈ �c×d and W2 ∈ �c×d

(where c is the number of classes) which are obtained by
minimizing the following two linear regressions:

∥
∥W1PTXs − (Y1 + B1 � M1)

∥
∥

2
F (6)

∥
∥W2PTXt − (Y2 + B2 � M2)

∥
∥

2
F (7)

where Y1 = [y1
1, y2

1, . . . , yns
1 ] ∈ �c×ns and Y2 =

[y1
2, y2

2, . . . , ynt
2 ] ∈ �c×nt are defined as follows: for each

data point xi
s or xj

t (i = 1, . . . , ns; j = 1, . . . , nt), yi
k or yj

k

(k = 1, 2) is its label vector. If xi
s or xj

t is from the νth
class (ν = 1, 2, . . . , c), then only the νth entry of yi

k or yj
k

is one and all the other entries are zero. In (6) and (7), Bk

(k = 1, 2) is defined as (Bk)ij =
{

+1, if (Yk)ij = 1

−1, if (Yk)ij = 0
and

Mk ≥ 0 (k = 1, 2). Our goal is to learn a unified classifier,
instead of the unified feature representation of data. Therefore,
the double classifiers are required to approximate each other
during the classifier learning process, which is formulated as

‖W1 − W2‖2
F. (8)

Combining (5)–(8), we obtain the objective of DDCA as
follows:

min
W1,W2,M1≥0,M2≥0,P

∥
∥W1PTXs − (Y1 + B1 � M1)

∥
∥

2
F

+ ∥
∥W2PTXt − (Y2 + B2 � M2)

∥
∥

2
F + λ1‖W1 − W2‖2

F

+ λ2Tr
(

PTX�XTP
)

(9)

where λ1 and λ2 are the two non-negative tradeoff parameters
and M1 and M2 are non-negative label relaxation matrices.
From the above objective function, we can see that two clas-
sifier parameters W1 and W2 are separately trained on PTXs

and PTXt. This is different from the previous cross-domain
recognition methods which only learn a single classifier on the
mixed data, that is, PTX. In cross-domain recognition scenario,
existing methods mainly focus on changing the feature repre-
sentation of data to obtain a good data alignment. However, it
is difficult to completely eliminate the discrepancy owing to
the intrinsic characteristic of cross-domain data. Thus, the way
of learning two different classifiers on different feature repre-
sentations is prior. The third term is to make W1 approximate
W2 so that the two classifiers can dynamically approximate to
each other. This guarantees the final classifier does not deviate
too much from the two classifiers so that the domain knowl-
edge of source and target domains can all be used to boost
the classification performance of classifier.

B. Optimization Algorithm

The optimization problem (9) involves five variables which
cannot be solved simultaneously. Consequently, we propose an
iterative algorithm. First, we use A1 and A2 to replace W1PT

and W2PT , respectively, and then we can rewrite (9) as

min
W1,W2,M1≥0,M2≥0,P,A1,A2

‖A1Xs − (Y1 + B1 � M1)‖2
F

+ ‖A2Xt − (Y2 + B2 � M2)‖2
F + λ1‖W1 − W2‖2

F

+ λ2Tr
(

PTX�XTP
)

+ λ3

{∥
∥W1PT − A1

∥
∥

2
F + ∥

∥W2PT − A2
∥
∥

2
F

}

. (10)

In the following, we introduce the proposed optimization
algorithm in detail.

Update A1 as Given the Other Variables: We can obtain the
solution of A1 by solving the following objective:

min
A1

‖A1Xs − (Y1 + B1 � M1)‖2
F

+ λ3
∥
∥W1PT − A1

∥
∥

2
F. (11)
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We set the derivatives of (11) with respect to A1 equaling
to zero, then (11) is minimized by

A1 = (

(Y1 + B1 � M1)X
T
s + λ3W1PT)(

XsX
T
s + λ3I

)−1
.

(12)

Update A2 as Given the Other Variables: We can obtain the
solution of A2 by solving the following objective:

min
A2

‖A2Xt − (Y2 + B2 � M2)‖2
F

+ λ3
∥
∥W2PT − A2

∥
∥

2
F. (13)

We set the derivatives of (13) with respect to A2 equaling
to zero, then (13) is minimized by

A2 = (

(Y2 + B2 � M2)X
T
t + λ3W2PT)(

XtX
T
t + λ3I

)−1
.

(14)

Update W1 as Given the Other Variables: We can obtain
the solution of A1 by solving the following objective:

min
W1

λ1‖W1 − W2‖2
F + λ3

∥
∥W1PT − A1

∥
∥

2
F. (15)

We set the derivatives of (15) with respect to W1 equaling
to zero, then (15) is minimized by

W1 = (

λ1W2 + λ3PTAT
1

)(

λ1I + λ3PTP
)−1

. (16)

Update W2 as Given the Other Variables: We can obtain
the solution of W2 by solving the following objective:

min
W2

λ1‖W1 − W2‖2
F + λ3

∥
∥W2PT − A2

∥
∥

2
F. (17)

We set the derivatives of (17) with respect to W2 equaling
to zero, then (17) is minimized by

W2 = (

λ1W1 + λ3PTAT
2

)(

λ1I + λ3PTP
)−1

. (18)

Update M1 and M2 as Given the Other Variables: We can
obtain the solutions of M1 and M2 by solving the following
objectives:

min
M1≥0

‖A1Xs − (Y1 + B1 � M1)‖2
F (19)

min
M2≥0

‖A2Xt − (Y2 + B2 � M2)‖2
F. (20)

Considering the (i, j)th entry (M1)ij of M1, we have the
following objective:

min
M1≥0

(

(A1Xs − Y1)ij − (B1)ij(M1)ij
)2

. (21)

The optimal solution of M1 is as follows:

M1 = max[(A1Xs − Y1) � B1, 0]. (22)

Similarly, the solution of M2 is as follows:

M2 = max[(A2Xt − Y2) � B2, 0]. (23)

Update P as Given the Other Variables: We can obtain the
solution of P by solving the following objective:

min
P

λ2Tr
(

PTX�XTP
)

+ λ3

{∥
∥W1PT − A1

∥
∥

2
F + ∥

∥W2PT − A2
∥
∥

2
F

}

. (24)

Algorithm 1 DDCA
Input: Source and target domain data matrices Xs and Xt

and their corresponding label matrices Y1 and Y2;
Luxury matrices B1 and B2;
Parameters λ1, λ2 and λ3;
Output: The transformation matrices A1 and A2.
Initialization: M1 = M2; A1 = A2; W1 = W2
Set t = 0;
repeat

1. Update P by solving (25).
2. Update M1 by solving (21).
3. Update M2 by solving (22).
4. Update W1 by solving (15).
5. Update W2 by solving (16).
6. Update A1 by solving (11).
7. Update A2 by solving (13).
3. Update t = t + 1.

until Convergence

We set the derivatives of (24) with respect to P equaling to
zero, then we have the following formulation:

λ2X�XTP + λ3P
(

WT
1 W1 + WT

2 W2
)

− λ3
(

AT
1 W1 + AT

2 W2
) = 0. (25)

P is essentially updated by solving a Sylvester equation.
In summary, the process of solving problem (10) is sum-

marized in Algorithm 1.

C. Algorithm Analysis

This section gives the algorithm analysis, including the
convergence analysis and computational complexity analysis.

Convergence: The overall objective of DDCA is noncon-
vex. However, the subproblems are convex. Thus, the proposed
optimization algorithm monotonically decreases the value of
the objective function at each iteration step if the subprob-
lems converge to their global optimization. In this section,
we present the proofs of theory and experiment to verify
the effectiveness of the proposed optimization algorithm as
follows.

Theorem 1: Algorithm 1 monotonically decreases the value
of objective function in (10).

Proof: Since problem (10) is the summation of norms with
positive parameters, problem (10) is bounded from below
(at least bigger than a constant ϕ ≥ 0). It is obvious that
at each iteration solutions of P, A1, A2, M1, M2, W1, and
W2 generated by solving problems of (11), (13), (15), (16)
(21), (22), and (24)„ are the exact minimum points of cor-
responding optimization subproblems, respectively. Moreover,
each subproblem has an analytical solution and thus each
solution is the global optimal one. As a result, the value of
objective function in (10) is decreasing at each iteration of
Algorithm 1.

Denote {�}(t) as a sequence generated by the t-th iteration
of Algorithm 1, and then {�}(t) is a bounded below mono-
tone decreasing sequence based on Theorem 1. The bounded
monotone convergence theory proposed in [40] indicates that
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(a) (b) (c)

(f)(e)(d)

Fig. 2. Convergence curves on different datasets. (a) P5→P4. (b) D→A. (c) AD→C. (d) MSRC→VOC. (e) Clipart→Art. (f) USPS→MNIST.

every bounded monotone sequence is convergent. Therefore,
Algorithm 1 has a good convergence behavior. Fig. 2 also
experimentally validates the convergence and studies the speed
of the convergence process. From these figures, we can see
that the value of objective monotonically decreases as the
iteration number increase and changes a little bit after ten
iterations on these six cases, This demonstrates the effec-
tiveness and fast convergence of the proposed optimization
algorithm.

Computational Complexity: The main computational burden
of DDCA is composed of two parts: 1) matrix inverse and
2) solving Sylvester equation. First, the computation cost of
solving the Sylvester equation is about O(m3). Since (XsXT

s +
λ3I)−1 and (XtXT

t +λ3I)−1 can be precomputed outside of the
main iterations, the computation cost of matrix inverse process
in solving A1 and A2 can be ignored. The computation cost of
matrix inverse of solving W1 and W2 are all O(d3). Therefore,
the total computation cost is about O(θ(m3 +d3)), where θ is
the number of iteration. Generally, d � m and thus the total
computation cost O ∝ m3. From Fig. 2, we can see that the
value of θ is very small, say θ ≤ 10 and thus the computation
cost is acceptable.

Classifiers Fusion: When we obtain two classifier param-
eters A1 and A2, we can use A2 to classify the unlabeled
data points of the target domain. However, the source-domain
knowledge does not completely used to improve the algo-
rithmic performance when we use only W2 to classify the
target-domain data. To this end, we select the mean classifier,
that is, A = [(A1 + A2)/2] as the final classifier parameter
which fuses the knowledge of source and target domains to
classify the unlabeled target-domain data. Thus, we directly
use A to obtain the transformation result of the unlabeled
data point of the target domain and then we apply the nearest
neighbor (NN) classifier to classify it.

IV. EXPERIMENTS

In this section, we conducted extensive experiments on sev-
eral datasets to compare the performance of our proposed
DDCA with many state-of-the-art methods

A. Experiment Setting

Baselines: We compared DDCA with GFK (CVPR’12) [31],
LTSL-LDA (IJCV’14) [16], SCA (TPAMI’17) [32],
JGSA (CVPR’17) [30], JDA (ICCV’13) [12],
WSCDDL(IJCV’14) [33], DACoM (TPAMI’18) [1], and
class-specific reconstruction transfer learning (CRTL,
TIP’20) [41].

For SCA, WSCDDL, and JDA, the labeled target data
are used as the labeled source data and thus these meth-
ods can obtain more labeled source data. In doing so, these
methods can obtain better classification accuracy in general.
All comparison experiments were repeated ten times and the
experimental results with average classification accuracy (%)
and standard deviations were reported.

Datasets Introduction: The datasets used in our experiments
are CMU PIE [6]; Office-Caltech256 [16], [26]; COIL20 [6],
[12]; MSRC-VOC2007 [12], [29]; MNIST-USPS [6]; and
Office-Home [29]. The detailed introduction of these datasets
is summarized in Table II.

1) CMU PIE: It contains 41 368 face images from 68
persons with different variations, such as “expression,”
“pose,” and “illumination.” The resolution of each image
is 32×32. Our selected five subsets, that is, PIE1 (C05,
left pose), PIE2 (C07, upward pose), PIE3 (C09, down-
ward pose), PIE4 (C27, front pose), and PIE5 (C29, right
pose) and each subset corresponding to a distinct pose.
The face images in each subset were taken under differ-
ent illumination and expression conditions. We randomly
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TABLE II
DETAILED INFORMATION OF DIFFERENT DATASETS(NOTE THE NUMBER

IN PARENTHESES IS THE DIMENSIONALITY)

selected two different subsets from five subsets, that
is, (PIE1)P1, (PIE2)P2, . . . , (PIE5)P5, as the source-
domain and target-domain data, respectively, and thus
they were 20 cross-domain datasets.

2) Office-Caltech256: The common object categories in
Office are from three different domains, that is, Amazon,
DSLR, and Webcam and each domain contains 31 object
categories, that is, keyboard, laptop, bilk, monitor, etc.
The total number of images is 4652. Each category of
Amazon contains 90 images on average and each cat-
egory of DSLR and Webcam contains 30 images on
average. The Caltech256 has 30 607 images from 256
categories. The Office-Caltech256 dataset released by
Gong et al. [31] with SURF(800) features is used in
our experiment. We randomly selected two different sub-
sets from four subsets, that is, A, D, W, and C, as the
source-domain and target-domain data and thus we have
12 cross-domain object datasets. To further test the algo-
rithmic performance, we randomly selected two different
subsets as the source domain and a single subset as
the target domain. Thus, we also constructed 12 cross-
domain object datasets for two source domains versus
single target domain.

3) MSRC-VOC2017: MSRC (M) has 4323 images from
18 classes and VOC2007 (V) contains 5011 images
annotated with 20 concepts. Following [12], we con-
structed two different subsets by selecting 1269 images
for MSRC and 1530 images for VOC2007. All images
in the two subsets were uniformly rescaled to 256 pix-
els in length. The VLFeat open-source package was used
to extract 128-D dense SIFT (DSIFT) features and the
K-means clustering method was used to obtain a 240-
D codebook. Therefore, we constructed the training and
test data that share the same label set and feature space.
We interchangeably switched them and thus we have
two cases of W → V and V → M for cross-domain
classification.

4) Office-Home: It contains four domains, that is, Art
(Ar), Clipart (Cl), Product (Pr), and Real-World
(Rw) and each domain contains 65 kinds of every-
day objects. The ResNet [42] is used to extract
the features. Following [29], we used the pretrained
ResNet50 and ResNet152 models on the ImageNet

TABLE III
DETAILED SETTING OF �s AND �t OF DIFFERENT DATASETS

with the labeled source domain to extract the 5th
pooling features for unlabeled target-domain data. The
dataset can be downloaded at http://jian-liang.github.io/
home/user/Publications.html. We randomly selected two
different subsets from four subsets, that is, Ar,
Cl, Pr, and Rw, as the source-domain and target-
domain data and thus we have 12 cross-domain object
datasets.

5) COIL20: It contains 1440 images from 20 objects. The
images of each object were taken at pose interval of
five and thus each object has 72 poses. The resolu-
tion of each image is 32 × 32 pixels. Two subsets
COIL1 (C1) and COIL2 (C2) were selected in our
experiment. COIL1 contains 720 images taken in the
directions of [0◦, 85◦] ∪[180◦, 265◦] (quadrants 1 and
3). The images in COIL2 were taken in the directions
of [90◦, 175◦] ∪ [270◦, 355◦] (quadrants 2 and 4) and
thus COIL2 contains also 720 images. The way of con-
structing source and target domains is as follows: C1
(source) versus C2 (target) and C2 (source) versus C1
(target).

6) MNIST-USPS: The USPS (U) dataset contains 7291
training images and 2007 test images of size 16 × 16.
The MNIST (M) dataset has 60 000 training images and
10 000 test images of size 28×28. A subset (USPS ver-
sus MNIST) was selected by randomly sampling 2000
images in MNIST and 1800 images in USPS and the
subset shares ten semantic classes, with each corre-
sponding to one digit. To ensure the images in this subset
sharing the same feature space, we uniformly rescaled all
images to size of 16 × 16. We interchangeably switched
them and thus we have two cases of M → U and
U → M for cross-domain classification.

Data Setting: For each dataset, we randomly selected �s

and �t samples from source and target domains as the training
samples and the remaining samples of the target domain as
the test samples. Table III summarizes the detailed setting.

Parameter Setting: There are three parameters λ1, λ2,
and λ3 to be tuned in our method. We observed that the
performance of our method is not sensitive to λ1 and we set
λ1 ∈ {10−2, 10−1, 1, 101, 102}. Besides, it is observed that
our method is not sensitive to λ2 and λ3 when they are in
the range of [10−3, 10−1] and thus we selected them from
{10−3, 10−2, 10−1}. For the dimensionality d of the latent sub-
space, we set d ≥ �c+ c×0.2�, where �v� denotes the largest
integer not greater than v.

B. Experiments on the Synthetic Dataset

The first dataset is a randomly generated two-Gaussian data
and the second data is a randomly generated two-moon data.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Dynamic approximation procedure of double classifiers. (a) Original data. (b) #iterations=5. (c) #iterations=10. (d) #iterations=15. (e) #iterations=20.
(f) #iterations=25.

Each dataset has two different classes, that is, “+1” and “−1.”
As shown in Fig. 3, these two datasets have different distri-
butions. Our goal is to classify these data points into their
respective classes by using our method. We have shown the
dynamic approximation procedure of two different classifiers
A1 and A2 in Fig. 3. From Fig. 3, with the increasing of itera-
tions, the data points from different distributions have a good
alignment and the data points of different classes are classi-
fied more and more accurately. Moreover, the two classifiers
A1 and A2 become more close. As a result, they are approxi-
mately combined into a single classifier (A = [(A1 + A2)/2]).
The results displayed in Fig. 3 indicates that the dynamic
approximation scheme is effective and thus the classifier fusion
strategy is quite suitable.

C. Experiments on Real Benchmark Datasets
The experimental results on these datasets are reported

in Table IV–IX. Based on these results, we have the following
observations.

1) DDCA achieves consistently high classification
performance on all datasets. The improvement of
classification accuracy is very obvious. For example,
the average classification accuracy of DDCA is at least
5.00% higher than other methods on the Office-Caltech
256 dataset. The competitiveness of DDCA is still obvi-
ous on the other datasets. This indicates that the double
classifiers dynamic approximation is very effective in
learning a discriminative classifier parameter, that is,
A. Our method considers that a certain divergence still
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TABLE IV
CLASSIFICATION ACCURACIES (%) OF DIFFERENT METHODS ON THE CMU PIE DATASET. THE BOLD RED LETTER DENOTES THE

MARGIN OF DDCA OUTPERFORM THE SECOND BEST COMPETITOR

TABLE V
CLASSIFICATION ACCURACIES (%) OF DIFFERENT METHODS ON THE OFFICE-CALTECH256 DATASET. THE BOLD RED LETTER DENOTES

THE MARGIN OF DDCA OUTPERFORM THE SECOND BEST COMPETITOR

TABLE VI
CLASSIFICATION ACCURACIES (%) OF TWO SOURCE DOMAINS VERSUS SINGLE TARGET DOMAIN ON THE OFFICE-CALTECH256 DATASET.

THE BOLD RED LETTER DENOTES THE MARGIN OF DDCA OUTPERFORM THE SECOND BEST COMPETITOR

TABLE VII
CLASSIFICATION ACCURACIES (%) OF DIFFERENT METHODS ON THE DIFFERENT DATASETS.

THE BOLD RED LETTER DENOTES THE MARGIN OF DDCA OUTPERFORM THE SECOND BEST COMPETITOR

exists in the new feature representation of PTX and we
solve the issue by using the DDCA strategy to avoid
the effect of distribution divergence.

2) It is obvious that the large improvement of the proposed
DDCA over the follow-up competitors WSCDDL,
JGSA, JDA, and DACoM with significant margins on
all datasets. In general, the classification performance
of JGSA is better than that of JDA. Although DDCA
and JDA use a similar strategy to reduce the dis-
crepancies to some extent, DCAA further avoids the
effect of the divergence that exists in the new feature

representation and can achieves better performance.
DACoM projects data from different domains into a
common latent subspace for minimizing the covari-
ance mismatch of the two mapped distributions, and the
discriminant information and local geometric structure
are preserved to learn a suitable feature representation.
WSCDDL learns informative and discriminative dic-
tionaries for transfer learning and the reconstruction
coefficients are used as the new feature representation
for knowledge transfer. The above methods transform
data into a common subspace to form a new feature
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TABLE VIII
CLASSIFICATION ACCURACIES (%) OF DIFFERENT METHODS ON THE OFFICE-HOME DATASET WITH RESNET50-P5 FEATURES.

THE BOLD RED LETTER DENOTES THE MARGIN OF DDCA OUTPERFORM THE SECOND BEST COMPETITOR

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 4. t-SNE visualization of different data representations on different
datasets. (a) MNIST→USPS(X). (b) W→D(X). (c) MNIST→USPS(PT X).
(d) W→D(PT X). (e) MNIST→USPS(A1X). (f) W→D(A1X).
(g) MNIST→USPS(A2X). (h) W→D(A2X). (i) MNIST→USPS(AX).
(j) W→D(AX).

representation of data and the final classification is per-
formed on such feature representation which, however,
maybe not the optimal one for classification. On the

contrary, our method seamlessly integrates feature rep-
resentation learning and classifier learning into a unified
optimization objective, which is a significant reason to
encourage better classification.

3) The experimental results on the high-dimensional fea-
ture (CNN feature) datasets, that is, the Office-Home
dataset show that all compared methods perform well
and obtain higher classification results. Carefully look-
ing the average classification accuracy, our method also
has a large advantage which improves about 3.0% over
follow-up competitor. These results indicate that DDCA
can address different kinds of data.

D. Discussion

We presented the t-SNE to evaluate the performance of
DDCA by using different terms in Fig. 4 from the per-
spective of visualization. The subimages in the first and
second columns are the visualization results on the cases of
MNIST→USPS and W→D, respectively. The subimages in
the first row show that the original data from different domains
are not close together. The subimages in the second row denote
the feature representation of PTX. Although the conditional
distributions and marginal distributions are minimized, the data
from different domains but sharing the same label cannot inter-
lace sufficiently and thus it is not suitable to train the classifier.
In other words, the separability of data points is poor, which
also verifies our clarification in Section III. The subimages
in the third, fourth, and fifth rows represent the classification
results by, respectively, using classifiers A1, A2, and A. The
feature representation of AX has better separability than that
of feature representation of A1X and A2X, which verifies the
effectiveness of the classifier fusion strategy.

We also analyzed the necessity of using DDCA from the
perspective of classification accuracy. In Fig. 5, A0 represents
the classification accuracy (%) of using feature representation
of PTX by minimizing objective (5). A1 and A2, respectively,
represent the classification accuracy (%) of using feature rep-
resentation of A1X and A2X. A represents the classification
accuracy (%) of our method. From the results in Fig. 5,
classification accuracies of using PTX are inferior to that of
using A1X and A2X. This indicates that minimizing marginal
distributions and conditional distributions cannot effectively
eliminate domain conflict, which also verifies our clarification
in Section III. Therefore, the strategy of using new feature
representation of different domains to, respectively, train two
different classifiers is reasonable. In addition, we can see that
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TABLE IX
CLASSIFICATION ACCURACIES (%) OF DIFFERENT METHODS ON THE OFFICE-HOME DATASET WITH RESNET152-P5 FEATURES.

THE BOLD RED LETTER DENOTES THE MARGIN OF DDCA OUTPERFORM THE SECOND BEST COMPETITOR

Fig. 5. Classification accuracy (%) of our method with different cases
on different datasets in which the x-axis represents different cases and the
y-axis denotes the classification accuracy (%) (Office-Home dataset with
ResNet50-P5).

the classification accuracies (%) of two different classifiers A1X
and A2X are similar but slightly inferior to that of our method.
This indicates that the classifier fusion method proposed by
our method is significant to improve classification accuracy.

E. Parameter Sensitivity

There are there parameters λ1, λ2, and λ3 need to set in
advance. We experimentally studied how each of three param-
eters affects the classification performance of DDCA. We
conducted sensitivity analysis for DDCA with respect to λ1,
λ2, and λ3 on the cases of C → W and P5 → P1, respec-
tively. From Fig. 6, we can see that our method is robust to
the variation of λ1 ∈ [10−2, 102]. This indicates that the role
of classifiers approximation is significant when the data from
different domains but the same class cannot interlace enough
after applying the matrix of P. However, we can see that the
performance of DDCA is somewhat sensitive to values of λ2.
This indicates that the term of PTX�XTP is important to learn
a new feature representation of PTX. In other words, if PTX
can reduce the discrepancy completely, the role of classifiers
approximation is relatively weak, and vice versa. From Fig. 6,
the term corresponding to parameter λ3 is also important to
achieve a better classification accuracy, which indicates that
the proposed optimization algorithm is effective from another
respect. In our experiments, for all compared methods we first
used the grid search to select the best parameters combination
on the smaller dataset and then we fine-tune these parame-
ters on another small dataset. Finally, we employed optimal
parameters on whole datasets.

(a) (b)

(c) (d)

Fig. 6. Classification accuracy (%) of our method versus parameters λ1, λ2,
and λ3 on different cases (a) C→W. (b) C→W. (c) P5→P1. (d) P5→P1.

V. CONCLUSION

In this article, a double classifiers approximation method
is proposed to address the negative effect of discrepancies of
the mixed data of PTX. We also give a simple and effec-
tive classifier fusion strategy to learn a suitable classifier for
classification. We integrate the feature representation of data
learning and classifier learning into a unified optimization
objective to guarantee an overall optimum in algorithmic
performance. An effective alternating optimization algorithm
with fast convergence was proposed to ensure the high-quality
solutions. Extensive experiments performed on the synthetic
and real benchmark datasets show the superiority of DDCA
in comparison with the state-of-the-art methods in terms of
classification accuracy. In the future, we will use two differ-
ent transformation matrices instead of a single matrix [i.e.,
transformation matrix P in (5)] to, respectively, reduce the
difference in the marginal and conditional distributions for fur-
ther improving the classification accuracy. In addition, we will
extend our method to the deep learning framework for learning
more transferrable feature.
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